Glossary#
Notation#
Punctuation: ∎
Logical Operations: \(\forall\), \(\exists\), \(\leftrightarrow\), \(\to\), \(\leftarrow\), \(\land\), \(\lor\)
Arithmetical Relations: \(\neq\), \(=\), \(\geq\), \(\leq\), +, -
Sets: \(\emptyset\), \(\mathbb{N}\), \(N_i\)
Set Operations: \(\cup\), \(\cap\)
Set Relations: \(\in\), \(\notin\), \(\subset\), \(\subseteq\)
Strings: s, t, u
Domain: S
Alphabet: \(\Sigma\)
Characters: \(\mathfrak{a}\), \(\mathfrak{b}\), \(\mathfrak{c}\), … , \(\sigma\), \(\varepsilon\)
Character Variables: \(\iota\), \(\nu\), \(\omicron\), \(\rho\)
Language: L
Words: a, b, c
Word Variables: \(\alpha\), \(\beta\), \(\gamma\)
Character Index Notation: t[i]
Word Classes: R, I
Phrases of Word Length n: \(P_n\)
Lexicons: \(X_L (n)\)
Phrases Variables: p, q, r
Sentences: ᚠ, ᚢ, ᚦ
Sentence Variables: \(\zeta\), \(\xi\)
Word Index Notation: \(\zeta\{i\}\)
Partial Sentence: \(\zeta[:i]\), \(\zeta[i:]\)
Pivots: \(\Phi(\zeta)\)
Pivot Words: \(\zeta\{\Phi-\}\), \(\zeta\{\Phi+\}\)
Sentence Classes: \(A(n)\), K, P, PP, IP, \(P^-\), \(P^+\)
Categories: \(C_L(m)\)
Relations: \(\subset_s\), \((i/n/j)_{\zeta}\)
Functions: l(t), \(\Lambda(t)\), \(\Delta(t)\)
Operations: inv(s), \(\varsigma(\zeta)\), \(D\Pi_{i=1}^{n} p(i)\), \(L\Pi_{i=1}^{n} p(i)\)
Definitions#
D 1.1.1: Concatenation: ut
D 1.1.2: Character-Level Set Representation: T
D 1.1.3: String Length: l(t)
D 1.1.4: String Equality: \(u = t\)
D 1.1.5: Character Index Notation: t[i]
D 1.1.6: Consecutive Functions: f(i)
D 1.1.7: Containment: \(t \subset_{s} u\)
D 1.2.1: Language: L
D 1.2.2: Word: \(\alpha\)
D 1.2.3: Word Equality: \(\alpha = \beta\)
D 1.2.4: String Inversion: inv(s)
D 1.2.5: Phrase: \(P_n = (\alpha_1, \alpha_2, ..., \alpha_n) = (P_n(1), )\)
D 1.2.6: Lexicon: \(\mathrm{X}_L(n) = \{ P_n | P_n = (\alpha_1, \alpha_2, ..., \alpha_n) \land \forall i \in \mathbb{N}_n: \alpha_i \in L \}\)
D 1.2.7: Delimitation: \(D\Pi_{i=1}^{n} p(i)\)
D 1.2.8: Limitation: \(L\Pi_{i=1}^{n} p(i)\)
D 1.3.1: Reflective Words: \(\alpha \in R \leftrightarrow \forall i \in \mathbb{N}_{l(\alpha)}: \alpha[i] = \alpha[l(\alpha) - i + 1]\)
D 1.3.2: Invertible Words: \(\alpha \in I \leftrightarrow \text{inv}(\alpha) \in L\)
D 2.1.1: Corpus: \(C_L\)
D 2.1.2: Sentence: ᚠ
D 2.1.3: Word-Level Set Representation: \(W_{ᚠ}\)
D 2.1.4: Word Length: \(\Lambda(\zeta)\)
D 2.1.5: Word Index Notation: \(\zeta\{i\}\)
D 2.1.6: Intervention: \((i/n/j)_\zeta\)
D 2.2.1: Semantic Coherence
D 2.3.1: Admissible Sentences: \(t \in A(n) \leftrightarrow (\exists p \in \mathrm{X}_L(n): t = \Pi_{i=1}^{n} p(i)) \land (t \in C_L)\)
D 2.3.2: Invertible Sentences: \(\zeta \in K \leftrightarrow \text{inv}(\zeta) \in C_L\)
D 3.1.1: \(\sigma\)-Reduced Alphabet: \(\Sigma_\sigma\)
D 3.1.2: \(\sigma\)-Reduction: \(\varsigma(\zeta)\)
D 3.2.1: Delimiter Count Function: \(\Delta(t) = | D_t |\)
D 4.1.1: Palindromes: \(\zeta \in P \leftrightarrow (\varsigma(\zeta) = \text{inv}(\varsigma(\zeta)))\)
D 4.1.2: Perfect Palindromes: \(\zeta \in PP \leftrightarrow \zeta = \text{inv}(\zeta)\)
D 4.1.3: Imperfect Palindromes: \(\zeta \in P - PP\)
D 4.1.4: Aspect
D 4.2.1: Left Partial Sentence: \(Z[:n]\)
D 4.2.2: Right Partial Sentence: \(Z[n:]\)
D 4.2.3: Pivots: \(\Phi(\zeta)\)
D 4.2.4: Even Palindromes: \(\zeta \in P_{+} \leftrightarrow [ (\zeta \in P) \land (\exists k \in \mathbb{N} : l(\zeta) = 2k )]\)
D 4.2.5: Odd Palindromes: \(\zeta \in P_{-} \leftrightarrow [ (\zeta \in P) \land (\exists k \in \mathbb{N} : l(\zeta) = 2k + 1) ]\)
D 4.2.6: Parity
D 4.2.7: Pivot Words
D 5.1.1: Lefthand Sentence Integrals: \(\Phi_{-}(\zeta,k) = \Sigma_{i=1}^{k} \Delta(\zeta[i]) \cdot (l(\zeta[:i])/l(\zeta))\)
D 5.1.2: Righthand Sentence Integrals: \(\Phi_{+}(\zeta,k) = \Sigma_{i=1}^{k} \Delta(\zeta[i]) \cdot (l(\zeta[i:])/l(\zeta))\)
D 5.1.3: Delimiter Mass: \(\mu_{-}(\zeta, i)\), \(\mu_{+}(\zeta, i)\)
D 5.2.1: Sample Space: \(\Omega = C_L\)
D 5.2.2: Basis Event: \(E_{(i, \iota)} = \{ \zeta \in \Omega | \zeta[i] = \iota \}\)
D A.1.1: Compound Words: \(\eta \in CW_L \leftrightarrow [(\exists \alpha, \beta \in L: \eta = \alpha\beta) \lor (\exists \alpha \in L, \exists \gamma \in CW_L: \eta = \alpha\gamma)] \land (\eta \in L)\)
D A.1.2: Compound Invertible Words: \(\eta \in CIW_L \leftrightarrow [ (\eta \in CW_L) \land (\eta \in I) ]\)
D A.2.1: \(\sigma\)-Pairing Language: \(\alpha \in L_\sigma \leftrightarrow \exists \zeta \in C_L: \alpha = \varsigma(\zeta)\)
D A.2.2: Palindromic Pairing Language: \(\alpha \in L_P \leftrightarrow \exists \zeta \in P: \alpha = (\varsigma(\zeta))\)
D A.3.1: Category: \(C_L(m)\)
D A.3.2: Categorical Size: \(\kappa\)
D A.4.1: \(\sigma\)-Induction: \(\varsigma^{-1}(\zeta, m, T)\)
D A.5.1: Reflective Structure: \(s \in RS \leftrightarrow [\exists n \in \mathbb{N}, \exists p \in \mathrm{X}_L(n): (s = \Pi_{i=1}^{n} p(i)) \land (\varsigma(S) = \text{inv}(\varsigma(s)))]\)
Algorithms#
A.1: Emptying Algorithm
A.2: Delimiting Algorithm
A.3: Reduction Algorithm
Axioms#
Character Axiom C.1: \(\forall \iota \in \Sigma: \iota \in S\)
Discover Axiom W.1: \(\forall \alpha \in L: [ (l(\alpha) \neq 0) \land (\forall i \in N_{l(\alpha)}: \alpha[i] \neq \sigma) ]\)
Duality Axiom S.1: \(( \forall \alpha \in L: \exists \zeta \in C_{L}: \alpha \subset_{s} \zeta ) \land ( \forall \zeta \in C_{L}: \exists \alpha \in L: \alpha \subset_{s} \zeta )\)
Extraction Axiom S.2: \(\forall \zeta \in C_{L} : \forall i \in N_{\Lambda(\zeta)}: \zeta\{i\} \in L\)
Finite Axiom S.3: \(\exists N \in \mathbb{N}: \forall \zeta \in C_L: l(\zeta) \leq N\)
Theorems#
T 1.1.1: \(\forall u, t \in S : l(ut) = l(u) + l(t)\)
T 1.1.2: \(\lvert S \rvert | \geq \aleph_{1}\)
T 1.1.3: \(\forall s \in S: \varepsilon \subset_{s} s\)
T 1.2.1: \(\forall \alpha \in L: \alpha \varepsilon = \varepsilon \alpha = \alpha\)
T 1.2.2: \(\forall \alpha \in L : \forall i \in N_{l(\alpha)}: \alpha[i] \subset_{s} \alpha\)
T 1.2.3: \(\forall \alpha \in L : \forall i \in N_{l(\alpha)}: \alpha[i] \neq \varepsilon\)
T 1.2.4: \(\forall s \in S: \text{inv}(\text{inv}(s)) = s\)
T 1.2.5: \(\forall u, t \in S: \text{inv}(ut) = \text{inv}(t)\text{inv}(u)\)
T 1.2.6: \(\forall u, t \in S : u \subset_{s} t \leftrightarrow \text{inv}(u) \subset_{s} \text{inv}(t)\)
T 1.2.7: \(\forall t, u, v \in S : (t \subset_{s} u) \land (u \subset_{s} v) \to (t \subset_{s} v)\)
T 1.2.8: \(\forall n \in \mathbb{N}: \forall p \in X_L(n): \exists! s \in S: s = D\Pi_{i=1}^{n} p(i)\)
T 1.2.9: \(\forall n \in \mathbb{N}: \forall p \in X_L(n): \exists! s \in S: s = L\Pi_{i=1}^{n} p(i)\)
T 1.3.1: \(\forall \alpha \in L: \alpha \in R \leftrightarrow \alpha = \text{inv}(\alpha)\)
T 1.3.2: \(\forall \alpha \in L: \alpha \in I \leftrightarrow \text{inv}(\alpha) \in I\)
T 1.3.3 \(R \subseteq I\)
T 1.3.4: If | R | is even, then | I | is even. If | R | is odd, then | I | is odd.
T 2.1.1: \(\forall \zeta \in C_L: \sum_{j=1}^{\Lambda(\zeta)} l(\zeta\{j\}) \geq \Lambda(\zeta)\)
T 2.1.2: \(\forall \zeta, \xi \in C_L: \Lambda(\zeta\xi) \leq \Lambda(\zeta) + \Lambda(\xi)\)
T 2.1.3: \(\forall \zeta \in C_L: \forall i, j \in N_{\Lambda(\zeta)}: i \neq k \to \exists n \in N_{l(\zeta)}: (i/n/j)_{\zeta}\)
T 2.2.1: \(\forall \zeta \in C_L: l(\zeta) \neq 0\)
T 2.2.2: \(\forall \zeta \in C_L: \forall i \in N_{l(\zeta)}: \zeta[i] \subset_s \zeta\)
T 2.2.3: \(\forall \zeta \in C_L : \forall i \in N_{l(\zeta)}: \zeta[i] \neq \varepsilon\)
T 2.2.4: \(\forall \zeta \in C_L: \Lambda(\zeta) \geq 1\)
T 2.2.5: \(\forall \zeta \in C_L: \zeta = D\Pi_{i=1}^{\Lambda(\zeta)} \zeta\{i\}\)
T 2.3.1: \(A(n) \subseteq C_{L}\)
T 2.3.2: \(\forall \zeta \in A(n): \Lambda(\zeta) = n\)
T 2.3.3: \(\forall \zeta \in C_L: \zeta \in A(\Lambda(\zeta))\)
T 2.3.4: \(\forall \zeta \in C_L: \exists p \in X_L(\Lambda(\zeta)): \zeta = D\Pi_{i=1}^{\Lambda(\zeta)} p(i)\)
T 2.3.5: \(\forall \zeta \in C_L: \zeta \in K \leftrightarrow \text{inv}(\zeta) \in K\)
T 2.3.6: \(\forall \zeta \in C_L: \text{inv}(\zeta) \in K \to \zeta \in C_L\)
T 2.3.7: \(\forall \zeta \in C_L: \forall i \in N_{\Lambda(\zeta)}: \zeta \in K \to \text{inv}(\zeta)\{i\} \in L\)
T 2.3.8: \(\forall \zeta \in C_L: \text{inv}(D\Pi_{i=1}^{\Lambda(\zeta)} \zeta\{i\}) = D\Pi_{i=1}^{\Lambda(\zeta)} \text{inv}(\zeta\{\Lambda(\zeta) - i + 1\})\)
T 2.3.9: \(\forall \zeta \in C_L: \forall i \in N_{\Lambda(\zeta)}: \zeta \in K \to \text{inv}(\zeta)\{i\} = \text{inv}(\zeta\{\Lambda(\zeta) - i + 1\})\)
T 2.3.10: \(\forall \zeta \in C_L: \zeta \in K \leftrightarrow (\forall i \in N_{\Lambda(\zeta)}: \text{inv}(\zeta)\{i\} = \text{inv}(\zeta\{\Lambda(\zeta) - i + 1\})) \land (\text{inv}(\zeta) \in A(\Lambda(\zeta)))\)
T 2.3.11: \(\forall \zeta \in C_L: \zeta \in K \to \forall i \in N_{\Lambda(\zeta)}: \zeta\{i\} \in I\)
T 3.1.1: \(\forall \zeta \in C_L: \text{inv}(\varsigma(\zeta)) = \varsigma(\text{inv}(\zeta))\)
T 3.1.2: \(\forall \zeta, \xi \in C_L: \varsigma(\zeta\xi) = (\varsigma(\zeta))(\varsigma(\xi))\)
T 3.1.3: \(\forall \zeta \in C_L: \varsigma(\varsigma(\zeta)) = \varsigma(\zeta)\)
T 3.1.4: \(\forall \zeta \in C_L: \Lambda(\varsigma(\zeta)) \leq 1\)
T 3.1.5: \(\forall u, t \in S : u \subset_s t \leftrightarrow \varsigma(u) \subset_s \varsigma(t)\)
T 3.1.6: \(\forall \zeta \in C_L: \forall i \in N_{\Lambda(\zeta)}: \zeta\{i\} \subset_s \varsigma(\zeta)\)
T 3.1.7: \(\forall \zeta \in K: [ \varsigma(\zeta) = \text{inv}(\text{inv}(\varsigma(\zeta))) ]\)
T 3.1.8: \(\forall \zeta \in C_L: \varsigma(\zeta) = L\Pi_{i=1}^{\Lambda(\zeta)} \zeta\{i\}\)
T 3.1.9: \(\forall n \in \mathbb{N}: \forall p \in \mathrm{X}_{L(n)}: \varsigma(D\Pi_{i=1}^{n} p(i)) = L\Pi_{i=1}^{n} p(i)\)
T 3.1.10: \(\forall \zeta \in C_L: l(\zeta) \geq l(\varsigma(\zeta))\)
T 3.2.1: \(\forall \zeta \in C_L: \Lambda(\zeta) = \Delta(\zeta) + 1\)
T 3.2.2: \(\forall s \in S: \Delta(s) = \Delta(\text{inv}(s))\)
T 3.2.3: \(\forall \zeta \in C_L: \Delta(\zeta) = \Delta(\text{inv}(\zeta))\)
T 3.2.4: \(\forall \alpha \in L: \Delta(\alpha) = 0\)
T 3.2.5: \(\forall \zeta \in C_L: l(\zeta) = \Delta(\zeta) + \sum_{i = 1}^{\Lambda(\zeta)} l(\zeta\{i\})\)
T 3.2.6: \(\forall \zeta \in C_L: l(\zeta) + 1 = \Lambda(\zeta) + \sum_{i = 1}^{\Lambda(\zeta)} l(\zeta\{i\})\)
T 3.2.7: \(\forall \zeta \in C_L: l(\zeta) \geq \sum_{i = 1}^{\Lambda(\zeta)} l(\zeta\{i\})\)
T 3.2.8: \(\forall \zeta \in C_L: l(\zeta) \geq \Lambda(\zeta)\)
T 3.2.9: \(\forall u, t \in S: \Delta(ut) = \Delta(u) + \Delta(t)\)
T 3.2.10: \(\forall u, t \in S: \Delta(\text{inv}(ut)) = \Delta(u) + \Delta(t)\)
T 3.2.11: \(\forall \zeta \in C_L: \Delta(\varsigma(\zeta))= 0\)
T 3.2.12: \(\forall t \in S: l(\varsigma(t)) + \Delta(t) = l(t)\)
T 3.2.13: \(\forall \zeta \in C_L: l(\varsigma(t)) + \Lambda(\zeta) = l(\zeta) + 1\)
T 4.1.1: \(PP \subset K\)
T 4.1.2: \(\forall \zeta \in PP: \forall i \in N_{\Lambda(\zeta)}: \text{inv}(\zeta)\{i\} = \text{inv}(\zeta\{\Lambda(\zeta) - i + 1\})\)
T 4.1.3: \(\forall \zeta \in PP: \forall i \in N_{\Lambda(\zeta)}: \zeta\{i\} \in I\)
T 4.1.4: \(PP \subset P\)
T 4.1.5: \(PP \cup IP = P\)
T 4.2.1: \(\forall \zeta \in C_L: \forall i \in N_{l(\zeta)}: \text{inv}(\zeta)[:i] = \zeta[l(\zeta) - i + 1:]\)
T 4.2.2: \(\forall \zeta \in C_L: \exists i \in N: (l(\zeta) = 2i + 1 ) \land (l(\zeta[:i+1]) = l(\zeta[i+1:]))\)
T 4.2.3: \(\forall \zeta \in C_L: \exists i \in N: (l(\zeta) = 2i) \land (l(\zeta[:i]) + 1 = l(\zeta[i:]))\)
T 4.2.4: \(\forall \zeta \in C_L: \exists n \in N_{l(\zeta)}: ( l(\zeta[:n]) = l(\zeta[n:]) ) \lor (l(\zeta[:n]) + 1 = l(\zeta[n:]))\)
T 4.2.5: \(\forall \zeta \in C_L: (\exists k \in N : l(\zeta) = 2k + 1) \leftrightarrow \Phi(\zeta) = \frac{l(\zeta) + 1}{2}\)
T 4.2.6: \(\forall \zeta \in P_{-}: \Phi(\zeta) = \frac{l(\zeta) + 1}{2}\)
T 4.2.7: \(\forall \zeta \in C_L: (\exists k \in \mathbb{N} : l(\zeta) = 2k) \leftrightarrow \Phi(\zeta) = \frac{l(\zeta)}{2}\)
T 4.2.8: \(\forall \zeta \in P_{+}: \Phi(\zeta) = \frac{l(\zeta)}{2}\)
T 4.2.9: \(\forall \zeta \in C_L: l(\zeta) + 1 = l(\zeta[:\Phi(\zeta)]) + l(\zeta[\Phi(\zeta):])\)
T 4.2.10: \(\forall \zeta \in C_L: \Phi(\varsigma(\zeta)) \leq \Phi(\zeta)\)
T 4.2.11: \(\forall \zeta in C_L: \zeta[\Phi(\zeta)] \neq \text{inv}(\zeta)[\Phi(\zeta)]) \to (\exists k \in \mathbb{N}: l(\zeta) = 2k)\)
T 4.2.12: \(\forall \zeta \in C_L: (\exists k \in \mathbb{N}: l(\zeta)=2k) \to \text{inv}(\zeta)[\Phi(\zeta)] = \zeta[\Phi(\zeta)+1]\)
T 4.2.13: \(P_{-} \cap P^+ = \emptyset\)
T 4.2.14: \(P_{-} \cup P^+ = P\)
T 4.3.1: \(\forall \zeta \in P: [ (\text{inv}(\zeta\{1\}) \subset_s \zeta\{\Lambda(\zeta)\}) \vee (\text{inv}(\zeta\{\Lambda(\zeta)\}) \subset_s \zeta\{1\}) ] \land [ (\zeta\{1\} \subset_s \text{inv}(\zeta\{\Lambda(\zeta)\})) \vee (\zeta\{\Lambda(\zeta)\} \subset_s \text{inv}(\zeta\{1\})) ]\)
T 4.3.2: \(\forall \zeta \in P: (\zeta[\Phi(\zeta)] = \sigma) \to ( (\text{inv}(\zeta\{\Phi-\}) \subset_s \zeta\{\Phi+\}) \vee (\text{inv}(\zeta\{\Phi+\}) \subset_s \zeta\{\Phi-\}))\)
T 5.1.1: \(\forall \zeta \in C_L: \forall k \in N_{l(\zeta)}: \Sigma_{i=1}^{k} \Delta(\zeta[i]) \cdot (l(\zeta[:i])/l(\zeta)) = \Sigma_{i=1}^{k} \Delta(\zeta[i]) \cdot (i/l(\zeta))\)
T 5.1.2: \(\forall \zeta \in C_L: \forall i \in N_{l(\zeta)}: \Sigma_{i=1}^{k} \Delta(\zeta[i]) \cdot (l(\zeta[i:])/l(\zeta)) = \Sigma_{i=1}^{k} \Delta(\zeta[i]) \cdot ((l(\zeta) - i + 1)/l(\zeta))\)
T 5.1.3: \(\forall \zeta \in C_L: \Sigma_{i=1}^{\Phi(\zeta)} \mu_{+}(\zeta, i) > \Sigma_{i=\Phi(\zeta)+1}^{l(\zeta)} \mu_{-}(\zeta, i) \leftrightarrow \Phi_{+}(\zeta,l(\zeta)) > \Phi_{-}(\zeta,l(\zeta))\)
T 5.2.1: \(\forall \zeta \in C_L: \forall k \in N_{l(\zeta)}: \Phi_{-}(\zeta, k) \geq 0 \land \Phi_{+}(\zeta,) \geq 0\)
T 5.2.2: \(\forall \zeta in C_L: \forall k \in N_{l(\zeta)}: \Phi_{-}(\varsigma(\zeta), k) = \Phi_{+}(\varsigma(\zeta), k) = 0\)
T 5.2.3: \(\forall \zeta \in C_L: \forall k \in N_{l(\zeta)}: \Phi_{-}(\text{inv}(\zeta), k) = \Sigma_{i=1}^{k} \Delta(\text{inv}(\zeta)[i]) \cdot (i/l(\zeta))\)
T 5.2.4: \(\forall \zeta \in C_L: \forall k \in N_{l(\zeta)}: \Phi_{+}(\text{inv}(\zeta), k) = \Sigma_{i=1}^{k} \Delta(\text{inv}(\zeta)[i]) \cdot ((l(\zeta) - i + 1)/l(\zeta))\)
T 5.2.5: :math:``
T 5.2.6; \(\forall \zeta \in PP: \forall i \in N_{l(\zeta)}: \Phi_{-}(\zeta,i) = \Phi_{+}(\zeta,i)\)
T A.1.1: \(\forall \zeta \in C_L: L_\zeta \subset L\)
T A.2.1: \(\forall \alpha \in L: \alpha \in L_\sigma \leftrightarrow [ \exists \zeta \in C_L: \exists i \in N_{\Lambda(\zeta)}: \zeta\{i\} \subset_s \alpha ]\)
T A.2.2: \(L_P \subset L_\sigma\)
T A.2.3: \(\forall \alpha \in L_P: \alpha = \text{inv}(\alpha)\)
T A.2.4: \(L \cap L_P \subseteq R\)
T A.2.5: \(L_P \subset R_{L_\sigma}\)
T A.3.1: \(\forall \alpha \in L: \exists i \in N_\kappa: \alpha \in C_L(i)\)